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PACS numbers:

I. INTRODUCTION

II. LISA ORBITS

We define the orbits of the pseudo-LISA spacecraft as defined in the Appendix of Ref. [2] (and as used in the LISA
Simulator). Namely, in the a Solar-system–barycentric ecliptic coordinate system (SSB frame) where we have set the
x axis toward the vernal point1. The reference orbit is defined by truncating the the exact Keplarian orbit at first
order in the eccentricty e. The coordinates of each spacecraft are then given by the expressions

x = a cos(α) + a e
(
sinα cosα sinβ − (1 + sin2 α) cosβ

)
,

y = a sin(α) + a e
(
sinα cosα cosβ − (1 + cos2 α) sinβ

)
, (1)

z = −
√

3 a e cos(α− β) ,

where β = 2(n − 1)π/3 + λ (n = 1, 2, 3) is the relative orbital phase of each spacecraft in the constellation, a is the
semi-major axis of the guiding center, and α(t) = 2πfmt+ κ is the orbital phase of the guiding center. At this order

of approximation the spacecraft form a rigid equilateral triangle with sidelength L = 2
√

3ae. Setting e = 0.00965 and
a = 1 AU yields the standard L = 5 × 106 km armlengths.

Notice that by keeping only linear terms in the eccentricity we are neglecting the variation in the optical path
length that would be present if the full Keplarian orbits were used2. The reason for this truncation is twofold. First,
it makes very little difference to the instrument response, and second, there are periodic and secular effects on the
orbits from other solar system bodies (notably Earth and Jupiter) that are comparbale in size to the higher order
Keplarian corrections. The precise form of the orbital perturbations will depend on when LISA is launched and the
final orbital injection, so it is difficult to define a convention that is meaningful beyond leading order in e.

The parameters κ and λ set the initial location and orientation of the LISA constellation. They are related to the
parameters φ̄0 and α0 used by Cutler [5] according to the mapping

φ̄0 = κ

α0 =
3π

4
+ κ− λ , (2)

1 We are using a somewhat unusual coordinate system. For objects far away, our ecliptic coordinates are very close to the standard

geocentric ecliptic coordinates. However, in spirit our coordinate system is more closely related to heliocentric ecliptic coordinates, but

in that case the x axis points in the direction of the heliocentric ecliptic zero, which is defined as the point where galactic equator

intersects the ecliptic plane nearest to the galactic center. In contrast to the vernal equinox point, the heliocentric ecliptic zero does

not precess with time. The heliocentric vernal equinox is defined by the line from the Sun to the Earth at the North Vernal Equinox.

It is in the opposite direction to the geocentric vernal point. We may want to adopt heliocentric ecliptic coordinates as our default as

there is little difference between barycentric and heliocentric, but it would mean adopting heliocentric longitude, which is less widely

used than the geocentric system
2 However: the LISA Simulator and Synthetic LISA actually use expressions accurate to order e

2 for the positions. Synthetic LISA uses

approximate armlengths accurate to order e, while the LISA Simulator uses armlengths accurate to order e
2 and the effects of pointing

ahead.



and to the paramaters η0 and ξ0 used by Synthetic LISA [4, 7] by the mapping

η0 = κ

ξ0 = 3π/2 − κ+ λ, sw < 0 . (3)

The ξ0 relation has the effect of exchanging spacecraft 2 and 3.
We should also give the conversion that maps to the Pre-Phase A report and other earlier works such

as Peterseim, Jennrich & Danzmann, CQG 13, 279 (1996), Schilling, CQG 14, 1513,(1997), Peterseim,
Jennrich & Danzmann, CQG 14, 1507, (1997), plus others from the 97 CQG proceedings

III. GRAVITATIONAL-WAVE SOURCES

We follow Ref. [2] (and the LISA Simulator) in describing the sky location of gravitational-wave sources by the
unit vector n̂,

n̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ , (4)

(where θ and φ are the J2000 ecliptic colatitude and longitude, the latter measured from the vernal point, aligned with
the x̂ axis in our convention). The corresponding gravitational radiation is modeled as a plane wave in a transverse-

traceless gauge, propagating in the Ω̂ = −n̂ direction in the SSB frame. The surfaces of constant phase are then given
by ξ = t+ n̂ · x = const. A generic gravitational wave can be decomposed into two standard polarization states,

h(ξ, n̂) = h+(ξ)e+(û, v̂) + h×(ξ)e×(û, v̂) , (5)

where e+ and e× are the polarization tensors

e+ = û⊗ û− v̂ ⊗ v̂,

e× = û⊗ v̂ + v̂ ⊗ û, (6)

and where

û = cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ, (7)

v̂ = sinφ x̂− cosφ ŷ .

If we refer gravitational-wave emission to the principal polarization axes p̂ and q̂ of the source,

h(ξ, n̂) = hS
+(ξ) ε

+(p̂, q̂) + hS
×

(ξ) ε
×(p̂, q̂), (8)

with

ε
+ = p̂⊗ p̂− q̂ ⊗ q̂,

ε
× = p̂⊗ q̂ + q̂ ⊗ p̂ . (9)

we can go back to the general decomposition (5) by setting

h+(ξ) = cos(2ψ)hS
+(ξ) + sin(2ψ)hS

×
(ξ), (10)

h×(ξ) = cos(2ψ)hS
×

(ξ) − sin(2ψ)hS
+(ξ), (11)

where ψ = −arctan(v̂ · p/û · p) is the source polarization angle. For a binary system, the inclination angle ι is
defined as the angle between the line of sight n̂ and the orbital angular momentum vector of the binary L, so that
ι = arccos(L̂ · n̂).

Put in the relation between angle to the line of ascending nodes of a binary system and the polar-
ization angle. Given in the paper by Whalquist

These variables are related to the set (θs, φs, θL, φL) used by Cutler [5] by

θ = θs

φ = φs

ι = arccos (cosθL cos θs + sin θL sin θs cos(φs − φL))

ψ = arctan

(
cos θs sin θL cos(φs − φL) − cos θL sin θs

sin θL sin(φs − φL)

)
, (12)



and to the set (beta, λ, ψ, ι) used in Synthetic LISA [4, 7] by

θ =
π

2
− β

φ = λ

ι = ι

ψ = −ψSL (13)

Here β is the J2000 ecliptic latitude, and ψSL is just called ψ in the Synthetic LISA literature.

IV. LISA RESPONSES

The basic LISA response to gravitational waves is taken to be the phase response Φij used in the LISA Simulator and
discussed in Sec. II of Ref. [2] [see especially Eqs. (4)–(13) and (22)] or equivalently the fractional frequency response

ygw
slr used in Synthetic LISA and discussed in Sec. II B of Ref. [7] (i and s identify the transmitting spacecraft, j and
r the receiving spacecraft for each phase measurement, l is a redundant link index).

The phase and fractional frequency formalisms are equivalent, and related by a simple time integration. It is not
clear at this time which will be the primary format for LISA data, and perhaps both should be adopted concurrently.
The frequency measurements have the advantage of being directly proportional to the gravitational strain; the phase
measurements have the advantage of representing more closely the actual output of the LISA phasemeters.

V. TDI OBSERVABLES

At present it appears that Time Delay Interferometry[8] will be needed to cancel laser phase noise (arm locking
may soften the requirements, but is unlikely to dispense with the need for TDI).

We will adopt the modified Time Delay Interferometry variables (TDI 1.5) [9, 10], as defined below, as the standard
pseudo-LISA data outputs. The modified TDI variables are a nice compromise between the unrealistically simple
Michelson variables that are swamped by laser phase noise, and the complicated second generation TDI variables that
are designed to cancel laser phase noise in an array that both rotates and flexes. The modified TDI variables fit nicely
with the order e trunctation of the spacecraft orbits, as the TDI 1.5 scheme is able to account for rotation but not
flexing[9].

We define the standard TDI observables following the Synthetic LISA [4, 7] naming scheme and sign conventions
(see also the Synthetic LISA file lisasim-tdi.cpp). All of these can be used both as frequency and phase observables
by replacing yslr measurements with Φij measurements. See the TDI Rosetta Stone [6] for translations between index
notations (in particular, the primed indices of Ref. [10] correspond to positive indices in the Synthetic LISA usage).

• First-generation TDI (TDI 1.0): the Sagnac observables α, β, γ (“centered”, respectively, on spacecraft 1, 2,
3, as all following sets of three), and the symmetrized Sagnac observable ζ, as defined in Ref. [8]. No need to
define the eight-pulse observables (Michelson, etc.), which are the same as in modified TDI.

• Modified TDI (TDI 1.5): the unequal-arm Michelson observables X , Y , Z; the relay observables U , V , W ; the
monitor observables E, F , G; the beacon observables P , Q, R; the Sagnac observables α1, α2, α3; and the
symmetrized Sagnac observables ζ1, ζ2, ζ3 as defined in Ref. [10].

• Second-generation TDI (TDI 2.0): the unequal-arm Michelson observables X1, X2, X3; the relay observables
U1, U2, U3; the monitor observables E1, E2, E3; the beacon observables P1, P2, P3 as defined in Ref. [10].

• Optimal TDI observables: in first-generation TDI, A, E, and T as defined in terms of α, β, γ in Ref. [11]; in
second-generation TDI, Ā, Ē, T̄ as defined in terms of α1, α2, α3 in Ref. [12].

Note also that there is a naming conflict here between the first-generation spacecraft-1-centered monitor observable
and the first-generation spacecraft-2-centered optimal observable.
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